Порядок расчетов при аналитическом методе обработки данных. Аналитическая обработка разнородной текстовой информации

ПРОВЕРКА ДОСТОВЕРНОСТИ ИНФОРМАЦИИ

Собранная из разных источников информация группируется и обрабатывается. При этом особое внимание уделяется проверке согласованности данных и их достоверности. Первичные документы, как правило, объективно отражают суть той или иной хозяйственной операции, но, к сожалению, имеют место и подлоги, искажения, ошибки. Недостоверность информации может быть вызвана рядом причин объективного и субъективного характера.

Процесс проверки включает несколько этапов :

1) счетная проверка (проверка соответствия данных путем составления оборотных ведомостей, таблиц счетной проверки);

2) встречная проверка (сопоставление информации, полученной из разных источников);

3) логическая проверка (аналитик выясняет с учетом сложившейся экономической ситуации насколько можно доверять данным внутренней и внешней информации);

4) корректировка (внесение корректировок в стоимость имущества, балансовой прибыли, размеров собственного капитала и амортизации);

Все вносимые корректировки должны быть обоснованными и объективными.

Подготовка и аналитическая обработка информации о ходе финансово-хозяйственной деятельности предприятия и о внешних и внутренних условиях является важной частью управления предприятием. Этот процесс осуществляется с применением различных технических средств для сбора, переработки, хранения и передачи информации, необходимой для оперативного принятия решений, учета и контроля за ходом производства.

Аналитическая обработка информации включает:

1) определение системы показателей , изучение которых требуется для достижения целей проводимого анализа.

Показатели группируются по:

- способу исчисления (абсолютные и относительные);

- применяемым измерителям (натуральные, стоимостные, трудовые и др.);

- получаемым характеристикам (количественные, качественные);

- степени обобщения (обобщающие, частные);

- охватываемому периоду (статики, динамики);

- отношению к деятельности предприятия (объективные, субъективные);

- слагаемым эффективности (производительность, фондоотдача, качество продукции, материалоотдача);

- стадиям жизненного цикла (проектирование, производство, материальное обеспечение, реализация, эксплуатация).

2) обобщение информации:

а) составление аналитических таблиц ;

Аналитическая таблица – наиболее рациональная и удобная для восприятия форма представления аналитической информации об изучаемых явлениях, представляющая собой систему мыслей, суждений, выраженных языком цифр.

Аналитические таблицы используются для сопоставления аналитически обработанных данных по хронологическим периодам и определения на этой основе: динамики изучаемых показателей; сравнения достигнутой или прогнозируемой их величины с базовыми данными, которыми могут быть соответствующие показатели плана предшествующих и прогнозируемых будущих периодов, обязательные нормы, показатели других хозяйствующих субъектов, отобранные аналитиком исходя из цели проводимого изучения. Табличный материал дает возможность охватить аналитические данные в целом как единую систему. С помощью таблиц значительно легче прослеживаются связи между изучаемыми явлениями.

б) графическое отображение информации;

Для усиления наглядности материалов проведенного анализа, динамика показателей представляется в виде рисунков, графиков, диаграмм, благодаря которым изучаемый материал становится более доходчивым и понятным.

Графики – это масштабное изображение показателей, чисел с помощью геометрических знаков (линий, прямоугольников, кругов) или условно художественных фигур. График, в отличие от таблиц, дает обобщающий рисунок положения или развития изучаемого явления и позволяет зрительно заметить закономерности, которые содержит числовая информация. Основные виды графиков, которые используются в анализе – это диаграммы . По своей форме они делятся на гистограммы (столбчатые, линейчатые), круговые, кольцевые, лепестковые, биржевые, цилиндрические и др. По содержанию различают диаграммы сравнения, структурные, динамические, графики связи, графики контроля и т.д.

в) сравнение – сопоставление однородных объектов с целью выявления их сходства или различий (более подробно рассмотрим далее);

г) приведение показателей в сопоставимый вид , т.е. приведение показателей к единой базе в соответствии с воздействующими факторами, поскольку сравнивать можно только качественно однородные величины. Несопоставимость показателей может быть вызвана разным уровнем цен, разным объемом производства, неоднородностью продукции, структурными изменениями и т.п. Сравнение несопоставимых показателей приведет к неправильным выводам на основе результатов анализа;

д) группировка информации – деление массы изучаемой совокупности объектов на количественно однородные группы по соответствующим признакам. В зависимости от цели анализа используются типологические (группы населения по роду деятельности, предприятий по формам собственности и т.п.); структурные (состав рабочих по профессиям, стажу работы, возрасту и т. п.); аналитические (качественные, количественные) группировки. По сложности построения группировки бывают простые и комбинированные .

е) детализация - последовательное расчленение изучаемых экономических явлений, позволяющее упорядочить анализ, комплексно рассмотреть все факторы, влияющие на показатель, смоделировать взаимные зависимости различных показателей и факторов и т.д.

Тема 6

КОРПОРАТИВНЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ ОБРАБОТКИ ЭКОНОМИЧЕСКОЙ ИНФОРМАЦИИ

Понятие корпоративной информационной технологии

Сущность и значение корпоративных информационных технологий

Среди многообразия программ для бизнеса под термином "информационные технологии в корпоративном управлении" традиционно понимают "комплексные системы автоматизации управления". Известны и другие их названия – системы масштаба предприятия, корпоративные информационные системы (КИС), корпоративные (или комплексные) системы управления (КСУ), автоматизированные системы управления (АСУ).

Как правило, комплексные системы автоматизации управления представляют собой "базовые” универсальные решения, пригодные для различных типов предприятий. В первую очередь это касается финансового управления, управления складскими запасами, управления покупками и продажами. Но эти же системы часто имеют отраслевые решения, отражающие ту или иную специфику и содержащие соответствующую нормативно-справочную базу.

Например, решение системы SAP R/3 для авиационной промышленности поддерживает учет и контроль серийных заводских номеров всех деталей самолета, сроков их эксплуатации, плановой замены или ремонта, что обеспечивает не только надежность производства, но и безопасность пассажиров.

Так как комплексные системы управления ориентированы, в первую очередь, на крупные, содержащие многопрофильные структуры, предприятия, то они не просто предлагают развитой набор функций, но и обеспечивают надежное хранение и обработку больших объемов информации, используя для этого мощные платформы и системные средства многопользовательской работы.

Современные информационные технологии, коммуникации и Интернет позволяют решать задачи удаленного доступа к единой базе данных, что также актуально для корпоративного управления.

Концепция построения

Хотя большинство разработчиков называет свои программные продукты управленческими (управление предприятием, складом, финансами и т.д.), в сущности, практически все программные средства, используемые в корпоративном управлении, представляют собой регистрирующие факты и документы финансово-хозяйственной деятельности, учетные системы с возможностью построения отчетов и справок в разрезах, допустимых аналитическими признаками. То есть, в базу данных вносится структурированная информация. Эта структурность закладывается в той или иной степени связанными между собой справочниками, классификаторами, параметрами и формами типовых документов. По имеющейся в базе данных информации "строится", "вытягивается", "собирается" инструментальными средствами так называемый "разрез". Получив на основе таких данных отчеты и справки, часто называемые аналитическими, руководство может принимать решения. Такова типовая концепция и типовая технология работы с системами рассматриваемого класса.



Не случайно такое различное по функциональному наполнению, системным решениям, назначению и использованию "управленческое" программное обеспечение, как "Галактика", "БЭСТ" и "1С: Предприятие", аналогично по принципам организации информации, технологии ее формирования и обработки, а также по методам взаимодействия с системами.

И все же предприятия, например, ОАО “Уралэлектромедь”, выдвигают такие жесткие и разнообразные требования к средствам корпоративного управления, что появляется необходимость многоуровневого их построения. Обычно центральным является ядро системы, содержащее только программные коды. Следующим концептуально важным элементом является встроенный инструментарий системы, позволяющий, не меняя коды программы, как минимум проводить ее настройку на рабочих местах, выполнение конкретных операций, вводить новые и изменять имеющиеся формы первичных и отчетных документов и задействовать прочие средства параметрической настройки. Более развитые системы имеют встроенные средства для создания различных моделей предприятия: информационной, организационной, функциональной и пр. И, наконец, сама база данных.

Аналитическая обработка информации

Планирование деятельности предприятия, получение оперативной информации и принятие на основе ее анализа правильного решения связано с обработкой больших объемов данных. Отчеты, формируемые в учетных корпоративных системах управления, обычно лишены гибкости. Их нельзя “покрутить”, “развернуть” или “свернуть”, чтобы получить желаемое представление данных, в том числе и графическое. Чем больше “срезов” и “разрезов ” можно сделать, тем реальнее можно представить картину деятельности предприятия и принять оптимальное решение по управлению бизнес-процессами. Для такого рода задач необходимо математическое и экономическое моделирование, а также высокое быстродействие. Аналитический модуль имеется в системе “РепКо”, более известна система “Триумф-Аналитика” (Корпорация “ПАРУС” – “Тора центр”). Казалось бы, учетные системы строят справки в различных “разрезах” по информации, хранящейся в базе данных, просто представляют то, что есть. А аналитические системы строят новую информацию по заданным параметрам или критериям, оптимизируя ее для конкретных целей. Поэтому чаще необходим специальный инструмент для просмотра и визуализации информации, которым является “оперативный анализ данных” (OLAP - online analytical processing). Он предоставляет собой совокупность удобных и быстродействующих средств доступа, просмотра и многомерного анализа информации, накопленной в хранилище.

OLAP-технологии используются для моделирования ситуации по схеме “что будет, если…”, составления разнообразных аналитических отчетов. Существуют специализированные западные программные продукты.

Обычно из корпоративных систем управления информация передается в специализированные программы аналитической обработки данных. Многие отечественные разработчики пытаются решать эти задачи самостоятельно, например, компании “Никос-Софт” (система NS-2000), “Цефей” (корпоративная система управления “Эталон”), "КОМСОФТ" (программно-методологический и инструментальный комплекс "КОМСОФТ-СТАНДАРТ" 2.0) и др.

6.4. Перспективы развития и использования корпоративных информационных технологий

Кроме развития и использования современного инструментария и платформ, а также системных средств, развитие отечественных корпоративных систем предполагает их функциональное насыщение, особенно в части производства.

Несмотря на повсеместное увлечение реализацией стандартов управления, ведущие игроки отечественного рынка программного обеспечения, занимаются разработкой отраслевых решений для различных типов производств.

Уменьшаются опасения фирм открыть "конфиденциальность" своих разработок, что способствует консолидации их усилий интегрировать свои продукты, а не разрабатывать самостоятельно все, от "а" до "я". Сегодня ни у кого не хватает ресурсов. На осмысление новой концепции, разработку проекта и системы, именно системы, которая изменяет свое качество в зависимости от того, что в ней есть, уходят годы. Кроме того, требование интеграции программных продуктов выдвигают и предприятия, желающие сохранить "работающие", как правило, специализированные, системы и информационно объединить их с вновь приобретаемыми.

Интеграция требуется и продуктам различных производителей – во имя объединения комплексных решений со специализированными:

– бюджетированием, финансово-экономическим анализом, обслуживанием клиентов, аналитической обработкой данных и пр.

Следует отметить, что более перспективны не сами системы управления, а простой и универсальный инструмент их создания, предназначенный для квалифицированных посредников между разработчиком и конечным пользователем. Сейчас эти функции пытаются выполнять системные администраторы и аналитики.

При наличии такого инструмента будут востребованы "готовые" типовые решения для всех предприятий всех отраслей.

Интернет как дополнительный инструмент развития бизнеса может эффективно использоваться только при наличии комплексной системы управления.

Хотя современные информационные и коммуникационные технологии, в том числе Интернет, и позволяют организовать сдачу в аренду программного обеспечения, говорить о ближайшей перспективе использования таких возможностей преждевременно, особенно в нашей стране. И не столько из соображений конфиденциальности, сколько из-за отсутствия порядка и надежных средств связи.

Попытки внедрения и опыт использования, даже не в полном объеме, информационных технологий на отечественных предприятиях на практике доказали, что "нельзя автоматизировать хаос". Необходима предварительная реорганизация бизнеса и самого предприятия, а также построение регламентов (инструкций) управления. Справиться самостоятельно с такой работой сотрудникам предприятия сложно. Особенно учитывая фактор времени в рыночных условиях. Поэтому повсеместно развивается практика взаимодействия с консалтинговыми компаниями, которые помогают предприятиям и учат их сотрудников "расширять узкие места", налаживать основной бизнес-процесс, отрабатывать технологию, строить информационные потоки и т.д. Автоматизировать налаженный процесс легче, проще, дешевле, быстрее.

Каждый должен заниматься своим делом. Бухгалтер, кладовщик, менеджер по продажам и другие "предметные" специалисты не должны совершенствовать форму бланков документов, раздвигать колонки или менять их местами в связи с изменением законодательства или схем ведения бизнеса. Поэтому рынок программного обеспечения постепенно из "продуктового" превращается в "обслуживающий". Начинает развиваться аутсорсинг - передача некоторых функций предприятия специалистам привлеченных компаний. Они занимаются обслуживанием техники, системного ПО, модификацией прикладной (функциональной) части систем и пр.

Наиболее важным и актуальным в использовании корпоративных систем управления становится информационно-технологическое и методическое обслуживание их пользователей и потребителей.

4. Классификация OLAP-продуктов.

5. Принципы работы OLAP-клиентов.

7. Сферы применения OLAP-технологий.

8. Пример использования OLAP-технологий для анализа в сфере продаж.

1. Место OLAP в информационной структуре предприятия.

Термин "OLAP" неразрывно связан с термином "хранилище данных" (Data Warehouse ).

Данные в хранилище попадают из оперативных систем (OLTP-систем), которые предназначены для автоматизации бизнес-процессов. Кроме того, хранилище может пополняться за счет внешних источников, например статистических отчетов.

Задача хранилища - предоставить "сырье" для анализа в одном месте и в простой, понятной структуре.

Есть и еще одна причина, оправдывающая появление отдельного хранилища - сложные аналитические запросы к оперативной информации тормозят текущую работу компании, надолго блокируя таблицы и захватывая ресурсы сервера.

Под хранилищем можно понимать не обязательно гигантское скопление данных - главное, чтобы оно было удобно для анализа.

Централизация и удобное структурирование - это далеко не все, что нужно аналитику. Ему ведь еще требуется инструмент для просмотра, визуализации информации. Традиционные отчеты, даже построенные на основе единого хранилища, лишены одного - гибкости. Их нельзя "покрутить", "развернуть" или "свернуть", чтобы получить желаемое представление данных. Вот бы ему такой инструмент, который позволил бы разворачивать и сворачивать данные просто и удобно! В качестве такого инструмента и выступает OLAP.

Хотя OLAP и не представляет собой необходимый атрибут хранилища данных, он все чаще и чаще применяется для анализа накопленных в этом хранилище сведений.

Место OLAP в информационной структуре предприятия (рис. 1).

Рисунок 1 . Место OLAP в информационной структуре предприятия

Оперативные данные собираются из различных источников, очищаются, интегрируются и складываются в реляционное хранилище. При этом они уже доступны для анализа при помощи различных средств построения отчетов. Затем данные (полностью или частично) подготавливаются для OLAP-анализа. Они могут быть загружены в специальную БД OLAP или оставлены в реляционном хранилище. Важнейшим его элементом являются метаданные, т. е. информация о структуре, размещении и трансформации данных. Благодаря им обеспечивается эффективное взаимодействие различных компонентов хранилища.

Подытоживая, можно определить OLAP как совокупность средств многомерного анализа данных, накопленных в хранилище.

2. Оперативная аналитическая обработка данных.

В основе концепции OLAP лежит принцип многомерного представления данных. В 1993 году E. F. Codd рассмотрел недостатки реляционной модели, в первую очередь, указав на невозможность "объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом", и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.

По Кодду, многомерное концептуальное представление данных (multi-dimensional conceptual view ) представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных.

Одновременный анализ по нескольким измерениям определяется как многомерный анализ. Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения, где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению.

Так, измерение Исполнитель может определяться направлением консолидации, состоящим из уровней обобщения "предприятие - подразделение - отдел - служащий". Измерение Время может даже включать два направления консолидации - "год - квартал - месяц - день" и "неделя - день", поскольку счет времени по месяцам и по неделям несовместим. В этом случае становится возможным произвольный выбор желаемого уровня детализации информации по каждому из измерений.

Операция спуска (drilling down ) соответствует движению от высших ступеней консолидации к низшим ; напротив, операция подъема (rolling up ) означает движение от низших уровней к высшим (рис. 2).


Рисунок 2. Измерения и направления консолидации данных

3. Требования к средствам оперативной аналитической обработки.

Многомерный подход возник практически одновременно и параллельно с реляционным . Однако, только начиная с середины девяностых годов, а точнее с
1993 г., интерес к МСУБД начал приобретать всеобщий характер. Именно в этом году появилась новая программная статья одного из основоположников реляционного подхода Э. Кодда , в которой он сформулировал 12 основных требований к средствам реализации OLAP (табл. 1).

Таблица 1.

Многомерное представление данных

Средства должны поддерживать многомерный на концептуальном уровне взгляд на данные.

Прозрачность

Пользователь не должен знать о том, какие конкретные средства используются для хранения и обработки данных, как данные организованы и откуда они берутся.

Доступность

Средства должны сами выбирать и связываться с наилучшим для формирования ответа на данный запрос источником данных. Средства должны обеспечивать автоматическое отображение их собственной логической схемы в различные гетерогенные источники данных.

Согласованная производительность

Производительность практически не должна зависеть от количества Измерений в запросе.

Поддержка архитектуры клиент-сервер

Средства должны работать в архитектуре клиент-сервер.

Равноправность всех измерений

Ни одно из измерений не должно быть базовым, все они должны быть равноправными (симметричными).

Динамическая обработка разреженных матриц

Неопределенные значения должны храниться и обрабатываться наиболее эффективным способом.

Поддержка многопользовательского режима работы с данными

Средства должны обеспечивать возможность работать более чем одному пользователю.

Поддержка операций на основе различных измерений

Все многомерные операции (например Агрегация) должны единообразно и согласованно применяться к любому числу любых измерений.

Простота манипулирования данными

Средства должны иметь максимально удобный, естественный и комфортный пользовательский интерфейс.

Развитые средства представления данных

Средства должны поддерживать различные способы визуализации (представления) данных.

Неограниченное число измерений и уровней агрегации данных

Не должно быть ограничений на число поддерживаемых Измерений.

Правила оценки программных продуктов класса OLAP

Набор этих требований, послуживших фактическим определением OLAP, следует рассматривать как рекомендательный, а конкретные продукты оценивать по степени приближения к идеально полному соответствию всем требованиям.

Позже определение Кодда было переработано в так называемый тест FASMI, требующий, чтобы OLAP-приложение предоставляло возможности быстрого анализа разделяемой многомерной информации.

Помнить 12 правил Кодда слишком обременительно для большинства людей. Оказались, что можно резюмировать OLAP-определение только пятью ключевыми словами: Быстрый Анализ Разделяемой Многомерной Информации - или, кратко - FASMI (в переводе с английского: F ast A nalysis of S hared M ultidimensional I nformation ).

Это определение впервые было сформулировано в начале 1995 года и с тех пор не нуждалось в пересмотре.

FAST (Быстрый ) - означает, что система должна обеспечивать выдачу большинства ответов пользователям в пределах приблизительно пяти секунд. При этом самые простые запросы обрабатываются в течение одной секунды и очень немногие - более 20-ти секунд. Исследования показали, что конечные пользователи воспринимают процесс неудачным, если результаты не получены по истечении 30 секунд.

На первый взгляд может казаться удивительным, что при получении отчета за минуту, на который не так давно требовались дни, пользователь очень быстро начинает скучать во время ожиданий, и проект оказывается намного менее успешным, чем в случае мгновенного ответа, даже ценой менее детального анализа.

ANALYSIS (Анализ) означает, что система может справляться с любым логическим и статистическим анализом, характерным для данного приложения, и обеспечивает его сохранение в виде, доступном для конечного пользователя.

Не так важно, выполнен ли этот анализ в собственных инструментальных средствах поставщика или в связанном внешнем программном продукте типа электронной таблицы, просто все требуемые функциональные возможности анализа должны обеспечиваться интуитивным способом для конечных пользователей. Средства анализа могли бы включать определенные процедуры, типа анализа временных рядов, распределения затрат, валютных переводов, поиска целей, изменения многомерных структур, непроцедурного моделирования, выявления исключительных ситуаций, извлечения данных и другие операции зависимые от приложения. Такие возможности широко отличаются среди продуктов, в зависимости от целевой ориентации.

SHARED (Разделяемой) означает, что система осуществляет все требования защиты конфиденциальности (возможно до уровня ячейки) и, если множественный доступ для записи необходим, обеспечивает блокировку модификаций на соответствующем уровне. Не во всех приложениях есть необходимость обратной записи данных. Однако количество таких приложений растет, и система должна быть способна обработать множественные модификации своевременным, безопасным способом.

MULTIDIMENSIONAL (Многомерной ) - это ключевое требование. Если бы нужно было определить OLAP одним словом, то выбрали бы его. Система должна обеспечить многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий, поскольку это определенно наиболее логичный способ анализировать бизнес и организации. Не установлено минимальное число измерений, которые должны быть обработаны, поскольку оно также зависит от приложения, и большинство продуктов OLAP имеет достаточное количество измерений для тех рынков, на которые они нацелены.

INFORMATION (Информации) - это все. Необходимая информация должна быть получена там, где она необходима. Однако многое зависит от приложения. Мощность различных продуктов измеряется в терминах того, сколько входных данных они могут обрабатывать, но не сколько гигабайт они могут хранить. Мощность продуктов весьма различна - самые большие OLAP продукты могут оперировать, по крайней мере, в тысячу раз большим количеством данных по сравнению с самыми маленькими. По этому поводу следует учитывать много факторов, включая дублирование данных, требуемую оперативная память, использование дискового пространства, эксплуатационные показатели, интеграцию с информационными хранилищами и т.п.

Тест FASMI - разумное и понятное определение целей, на достижение которых ориентированы OLAP.

4. Классификация OLAP -продуктов.

Итак, суть OLAP заключается в том, что исходная для анализа информация представляется в виде многомерного куба, и обеспечивается возможность произвольно манипулировать ею и получать нужные информационные разрезы - отчеты. При этом конечный пользователь видит куб как многомерную динамическую таблицу, которая автоматически суммирует данные (факты) в различных разрезах (измерениях), и позволяет интерактивно управлять вычислениями и формой отчета. Выполнение этих операций обеспечивается OLAP -машиной (или машиной OLAP -вычислений).

На сегодняшний день в мире разработано множество продуктов, реализующих OLAP -технологии. Чтобы легче было ориентироваться среди них, используют классификации OLAP -продуктов: по способу хранения данных для анализа и по месту нахождения OLAP -машины. Рассмотрим подробнее каждую категорию OLAP -продуктов.

Классификация по способу хранения данных

Многомерные кубы строятся на основе исходных и агрегатных данных. И исходные и агрегатные данные для кубов могут храниться как в реляционных, так и многомерных базах данных. Поэтому в настоящее время применяются три способа хранения данных: MOLAP (Multidimensional OLAP ), ROLAP (Relational OLAP ) и HOLAP (Hybrid OLAP ). Соответственно, OLAP -продукты по способу хранения данных делятся на три аналогичные категории:

1. В случае MOLAP , исходные и агрегатные данные хранятся в многомерной БД или в многомерном локальном кубе.

2. В ROLAP -продуктах исходные данные хранятся в реляционных БД или в плоских локальных таблицах на файл-сервере. Агрегатные данные могут помещаться в служебные таблицы в той же БД. Преобразование данных из реляционной БД в многомерные кубы происходит по запросу OLAP -средства.

3. В случае использования HOLAP архитектуры исходные данные остаются в реляционной базе, а агрегаты размещаются в многомерной. Построение OLAP -куба выполняется по запросу OLAP -средства на основе реляционных и многомерных данных.

Классификация по месту размещения OLAP -машины.

По этому признаку OLAP -продукты делятся на OLAP -серверы и OLAP -клиенты:

· В серверных OLAP -средствах вычисления и хранение агрегатных данных выполняются отдельным процессом - сервером. Клиентское приложение получает только результаты запросов к многомерным кубам, которые хранятся на сервере. Некоторые OLAP -серверы поддерживают хранение данных только в реляционных базах, некоторые - только в многомерных. Многие современные OLAP -серверы поддерживают все три способа хранения данных: MOLAP , ROLAP и HOLAP .

MOLAP.

MOLAP - это Multidimensional On-Line Analytical Processing, то есть Многомерный OLAP. Это означает, что сервер для хранения данных использует многомерную базу данных (МБД). Смысл использования МБД очевиден. Она может эффективно хранить многомерные по своей природе данные, обеспечивая средства быстрого обслуживания запросов к базе данных. Данные передаются от источника данных в многомерную базу данных, а затем база данных подвергается агрегации. Предварительный расчет - это то, что ускоряет OLAP-запросы, поскольку расчет сводных данных уже произведен. Время запроса становится функцией исключительно времени, необходимого для доступа к отдельному фрагменту данных и выполнения расчета. Этот метод поддерживает концепцию, согласно которой работа производится единожды, а результаты затем используются снова и снова. Многомерные базы данных являются относительно новой технологией. Использование МБД имеет те же недостатки, что и большинство новых технологий. А именно - они не так устойчивы, как реляционные базы данных (РБД), и в той же мере не оптимизированы. Другое слабое место МБД заключается в невозможности использовать большинство многомерных баз в процессе агрегации данных, поэтому требуется время для того, чтобы новая информация стала доступна для анализа.

ROLAP.

ROLAP - это Relational On-Line Analytical Processing, то есть Реляционный OLAP. Термин ROLAP обозначает, что OLAP-сервер базируется на реляционной базе данных. Исходные данные вводятся в реляционную базу данных, обычно по схеме "звезда" или схеме "снежинка", что способствует сокращению времени извлечения. Сервер обеспечивает многомерную модель данных с помощью оптимизированных SQL-запросов.

Существует ряд причин для выбора именно реляционной, а не многомерной базы данных. РБД - это хорошо отработанная технология, имеющая множество возможностей для оптимизации. Использование в реальных условиях дало в результате более проработанный продукт. К тому же, РБД поддерживают более крупные объемы данных, чем МБД. Они как раз и спроектированы для таких объемов. Основным аргументом против РБД является сложность запросов, необходимых для получения информации из большой базы данных с помощью SQL. Неопытный SQL-программист мог бы с легкостью обременить ценные системные ресурсы попытками выполнить какой-нибудь подобный запрос, который в МБД выполняется гораздо проще.

Агрегированные/Предварительно агрегированные данные.

Быстрая реализация запросов является императивом для OLAP. Это один из базовых принципов OLAP - способность интуитивно манипулировать данными требует быстрого извлечения информации. В целом, чем больше вычислений необходимо произвести, чтобы получить фрагмент информации, тем медленнее происходит отклик. Поэтому, чтобы сохранить маленькое время реализации запросов, фрагменты информации, обращение к которым обычно происходит наиболее часто, но которые при этом требуют вычисления, подвергаются предварительной агрегации. То есть они подсчитываются и затем хранятся в базе данных в качестве новых данных. В качестве примера типа данных, который допустимо рассчитать заранее, можно привести сводные данные - например, показатели продаж по месяцам, кварталам или годам, для которых действительно введенными данными являются ежедневные показатели.

Различные поставщики придерживаются различных методов отбора параметров, требующих предварительной агрегации и числа предварительно вычисляемых величин. Подход к агрегации влияет одновременно и на базу данных и на время реализации запросов. Если вычисляется больше величин, вероятность того, что пользователь запросит уже вычисленную величину, возрастает, и поэтому время отклика сократиться, так как не придется запрашивать изначальную величину для вычисления. Однако, если вычислить все возможные величины - это не лучшее решение - в таком случае существенно возрастает размер базы данных, что сделает ее неуправляемой, да и время агрегации будет слишком большим. К тому же, когда в базу данных добавляются числовые значения, или если они изменяются, информация эта должна отражаться на предварительно вычисленных величинах, зависящих от новых данных. Таким образом, и обновление базы может также занять много времени в случае большого числа предварительно вычисляемых величин. Поскольку обычно во время агрегации база данных работает автономно, желательно, чтобы время агрегации было не слишком длительным.

· OLAP -клиент устроен по-другому. Построение многомерного куба и OLAP -вычисления выполняются в памяти клиентского компьютера. OLAP -клиенты также делятся на ROLAP и MOLAP . А некоторые могут поддерживать оба варианта доступа к данным.

У каждого из этих подходов, есть свои "плюсы" и "минусы". Вопреки распространенному мнению о преимуществах серверных средств перед клиентскими, в целом ряде случаев применение OLAP -клиента для пользователей может оказаться эффективнее и выгоднее использования OLAP -сервера.

Разработка аналитических приложений с помощью клиентских OLAP-средств – процесс быстрый и не требующий специальной подготовки исполнителя. Пользователь, знающий физическую реализацию базы данных, может разработать аналитическое приложение самостоятельно, без привлечения ИТ-специалиста .

При использовании OLAP-сервера необходимо изучить 2 разные системы, иногда от различных поставщиков, – для создания кубов на сервере, и для разработки клиентского приложения.

OLAP-клиент предоставляет единый визуальный интерфейс для описания кубов и настройки к ним пользовательских интерфейсов.

Итак, в каких случаях применение OLAP-клиента для пользователей может оказаться эффективнее и выгоднее использования OLAP-сервера?

· Экономическая целесообразность применения OLAP -сервера возникает, когда объемы данных очень велики и непосильны для OLAP -клиента, иначе более оправдано применение последнего. В этом случае OLAP -клиент сочетает в себе высокие характеристики производительности и низкую стоимость.

· Мощные ПК аналитиков – еще один довод в пользу OLAP -клиентов. При применении OLAP -сервера эти мощности не используются.

Среди преимуществ OLAP-клиентов можно также назвать следующее:

· Затраты на внедрение и сопровождение OLAP -клиента существенно ниже, чем затраты на OLAP -сервер.

· При использовании OLAP -клиента со встроенной машиной передача данных по сети производится один раз. При выполнении OLAP -операций новых потоков данных не порождается.

5. Принципы работы OLAP -клиентов.

Рассмотрим процесс создания OLAP-приложения с помощью клиентского инструментального средства (рис. 1).

Рисунок 1. Создание OLAP-приложения с помощью клиентского ROLAP-средства

Принцип работы ROLAP-клиентов – предварительное описание семантического слоя, за которым скрывается физическая структура исходных данных. При этом источниками данных могут быть: локальные таблицы, РСУБД. Список поддерживаемых источников данных определяется конкретным программным продуктом. После этого пользователь может самостоятельно манипулировать понятными ему объектами в терминах предметной области для создания кубов и аналитических интерфейсов.

Принцип работы клиента OLAP-сервера иной. В OLAP-сервере при создании кубов пользователь манипулирует физическими описаниями БД. При этом в самом кубе создаются пользовательские описания. Клиент OLAP-сервера настраивается только на куб.

При создании семантического слоя источники данных – таблицы Sales и Deal – описываются понятными конечному пользователю терминами и превращаются в «Продукты» и «Сделки». Поле «ID» из таблицы «Продукты» переименовывается в «Код», а «Name » - в «Товар» и т.д.

Затем создается бизнес-объект «Продажи». Бизнес-объект – это плоская таблица, на основе которой формируется многомерный куб. При создании бизнес-объекта таблицы «Продукты» и «Сделки» объединяются по полю «Код» товара. Поскольку для отображения в отчете не потребуются все поля таблиц – бизнес-объект использует только поля «Товар», «Дата» и «Сумма».

В нашем примере на базе бизнес-объекта «Продажи» создан отчет по продажам товаров по месяцам.

При работе с интерактивным отчетом пользователь может задавать условия фильтрации и группировки такими же простыми движениями «мышью». В этот момент ROLAP-клиент обращается к данным в кэше . Клиент же OLAP-сервера генерирует новый запрос к многомерной базе данных. Например, применив в отчете о продажах фильтр по товарам, можно получить отчет о продажах интересующих нас товаров.

Все настройки OLAP-приложения могут храниться в выделенном репозитории метаданных, в приложении или в системном репозитории многомерной базы данных. Реализация зависит от конкретного программного продукта.

Все, что включается в состав этих приложений, представляет собой стандартный взгляд на интерфейс, заранее определенные функции и структуру, а также быстрые решения для более или менее стандартных ситуаций. Например, популярны финансовые пакеты. Заранее созданные финансовые приложения позволят специалистам использовать привычные финансовые инструменты без необходимости проектировать структуру базы данных или общепринятые формы и отчеты.

Интернет является новой формой клиента. Кроме того, он несет на себе печать новых технологий; множество интернет-решений существенно отличаются по своим возможностям в целом и в качестве OLAP-решения - в частности. Существует масса преимуществ в формировании OLAP-отчетов через Интернет. Наиболее существенным представляется отсутствие необходимости в специализированном программном обеспечении для доступа к информации. Это экономит предприятию кучу времени и денег.

6. Выбор архитектуры OLAP-приложения.

При реализации информационно-аналитической системы важно не ошибиться в выборе архитектуры OLAP-приложения. Дословный перевод термина On-Line Analytical Process - «оперативная аналитическая обработка» - часто воспринимается буквально в том смысле, что поступающие в систему данные оперативно анализируются. Это заблуждение - оперативность анализа никак не связана с реальным временем обновления данных в системе. Эта характеристика относится к времени реакции OLAP-системы на запросы пользователя. При этом зачастую анализируемые данные представляют собой снимок информации «на вчерашний день», если, например, данные в хранилищах обновляются раз в сутки.

В этом контексте более точен перевод OLAP как «интерактивная аналитическая обработка». Именно возможность анализа данных в интерактивном режиме отличает OLAP-системы от систем подготовки регламентированных отчетов.

Другой особенностью интерактивной обработки в формулировке родоначальника OLAP Э. Кодда является возможность «объединять, просматривать и анализировать данные с точки зрения множественности измерений, т. е. самым понятным для корпоративных аналитиков способом». У самого Кодда термин OLAP обозначает исключительно конкретный способ представления данных на концептуальном уровне - многомерный. На физическом уровне данные могут храниться в реляционных базах данных, однако на деле OLAP-инструменты, как правило, работают с многомерными базами данных, в которых данные упорядочены в виде гиперкуба (рис. 1).

Рисунок 1. OLAP – куб (гиперкуб, метакуб )

При этом актуальность этих данных определяется моментом наполнения гиперкуба новыми данными.

Очевидно, что время формирования многомерной базы данных существенно зависит от объема загружаемых в нее данных, поэтому разумно ограничить этот объем. Но как при этом не сузить возможности анализа и не лишить пользователя доступа ко всей интересующей информации? Существует два альтернативных пути: Analyze then query («Сначала проанализируй - затем запроси дополнительную информацию») и Query then analyze («Сначала запроси данные - затем анализируй»).

Последователи первого пути предлагают загружать в многомерную базу данных обобщенную информацию, например, месячные, квартальные, годовые итоги по подразделениям. А при необходимости детализации данных пользователю предлагается сформировать отчет по реляционной базе, содержащей требуемую выборку, например, по дням для данного подразделения или по месяцам и сотрудникам выбранного подразделения.

Сторонники второго пути, напротив, предлагают пользователю, прежде всего, определиться с данными, которые он собирается анализировать и именно их загружать в микрокуб - небольшую многомерную базу данных. Оба подхода отличаются на концептуальном уровне и имеют свои достоинства и недостатки.

К достоинствам второго подхода следует отнести «свежесть» информации, которую пользователь получает в виде многомерного отчета - «микрокуба ». Микрокуб формируется на основе только что запрошенной информации из актуальной реляционной базы данных. Работа с микрокубом осуществляется в интерактивном режиме - получение срезов информации и ее детализация в рамках микрокуба осуществляется моментально. Другим положительным моментом является то, что проектирование структуры и наполнение микрокуба осуществляется пользователем «на лету», без участия администратора баз данных. Однако подход страдает и серьезными недостатками. Пользователь, не видит общей картины и должен заранее определяться с направлением своего исследования. В противном случае запрошенный микрокуб может оказаться слишком мал и не содержать всех интересующих данных, а пользователю придется запрашивать новый микрокуб , затем новый, затем еще и еще. Подход Query then analyze реализует инструментальное средство BusinessObjects одноименной компании и инструментальные средства платформы Контур компании Intersoft Lab .

При подходе Analyze then query объем данных, загружаемых в многомерную базу данных, может быть достаточно велик, наполнение должно выполняться по регламенту и может занимать достаточно много времени. Однако все эти недостатки окупаются впоследствии, когда пользователь имеет доступ практически ко всем необходимым данным в любой комбинации. Обращение к исходным данным в реляционной базе данных осуществляется лишь в крайнем случае, когда необходима детальная информация, например, по конкретной накладной.

На работе единой многомерной базы данных практически не сказывается количество обращающихся к ней пользователей. Они лишь читают имеющиеся там данные в отличие от подхода Query then analyze , при котором количество микрокубов в предельном случае может расти с той же скоростью, что и количество пользователей.

При данном подходе увеличивается нагрузка на ИТ-службы , которые кроме реляционных вынуждены обслуживать еще и многомерные базы данных. Именно эти службы несут ответственность за своевременное автоматическое обновление данных в многомерных базах данных.

Наиболее яркими представителями подхода «Analyze then query » являются инструментальные средства PowerPlay и Impromptu компании Cognos .

Выбор и подхода, и инструмента его реализующего, зависит в первую очередь от преследуемой цели: всегда приходится балансировать между экономией бюджета и повышением качества обслуживания конечных пользователей. При этом надо учитывать, что в стратегическом плане создание информационно-аналитических систем преследует цели достижения конкурентного преимущества, а не избежания расходов на автоматизацию. Например, корпоративная информационно-аналитическая система может предоставлять необходимую, своевременную и достоверную информацию о компании, публикация которой для потенциальных инвесторов обеспечит прозрачность и предсказуемость данной компании, что неизбежно станет условием ее инвестиционной привлекательности.

7. Сферы применения OLAP-технологий.

OLAP применим везде, где есть задача анализа многофакторных данных. Вообще, при наличии некоторой таблицы с данными, в которой есть хотя бы одна описательная колонка (измерение) и одна колонка с цифрами (меры или факты) OLAP-инструмент, как правило, будет эффективным средством анализа и генерации отчетов.

Рассмотрим некоторые сферы применения OLAP-технологий, взятые из реальной жизни.

1. Продажи.

На основе анализа структуры продаж решаются вопросы необходимые для принятия управленческих решений: об изменении ассортимента товаров, цен, закрытии и открытии магазинов, филиалов, расторжении и подписании договоров с дилерами, проведения или прекращения рекламных кампаний и т.д.

2. Закупки.

Задача обратно противоположная анализу продаж. Многие предприятия закупают комплектующие и материалы у поставщиков. Торговые предприятия закупают товары для перепродажи. Возможных задач при анализе закупок множество, от планирования денежных средств на основе прошлого опыта, до контроля за менеджерами , выбирающими поставщиков.

3. Цены.

С анализом закупок смыкается анализ рыночных цен. Целью этого анализа является оптимизация расходов, выбор наиболее выгодных предложений.

4. Маркетинг.

Под маркетинговым анализом будем иметь ввиду только область анализа покупателей или клиентов-потребителей услуг. Задачей этого анализа является правильное позиционирование товара, выявление групп покупателей для целевой рекламы, оптимизация ассортимента. Задача OLAP в данном случае - дать пользователю инструмент быстрого, со скоростью мысли, получения ответов на вопросы, интуитивно возникающие по ходу анализа данных.

5. Склад.

Анализ структуры остатков на складе в разрезе видов товаров, складов, анализ сроков хранения товаров, анализ отгрузки по получателям и многие другие важные для предприятия виды анализа возможны при наличии в организации складского учета.

6. Движение денежных средств.

Это целая область анализа, имеющая множество школ и методик. OLAP-технология может служить инструментом реализации или усовершенствования этих методик, но никак не их заменой. Анализируются денежные обороты безналичных и наличных средств в р азрезе бизнес-операций , контрагентов, валют и времени с целью оптимизации потоков, обеспечения ликвидности, и т.д. Состав измерений сильно зависит от особенностей бизнеса, отрасли, методики.

7. Бюджет.

Одна из самых благодатных областей применения OLAP-технологий. Не даром ни одна современная система бюджетирования не считается завершенной без наличия в ее составе OLAP-инструментария для анализа бюджета. Большинство бюджетных отчетов легко строятся на основе OLAP-систем. При этом отчеты отвечают на очень широкую гамму вопросов: анализ структуры расходов и доходов, сравнение расходов по определенным статьям у разных подразделений, анализ динамики и тенденций расходов на определенные статьи, анализ себестоимости и прибыли.

8. Бухгалтерские счета.

Классический балансовый отчет, состоящий из номера счета и содержащий входящие остатки, обороты и исходящие остатки может быть отлично проанализирован в OLAP-системе. Кроме того, OLAP-система может автоматически и очень быстро вычислять консолидированные балансы многофилиальной организации, балансы за месяц, квартал и год, агрегированные балансы по иерархии счетов, аналитические балансы на основании аналитических признаков.

9. Финансовая отчетность.

Технологично построенная система отчетности есть ни что иное, как набор именованных показателей со значениями на дату, которые требуется сгруппировать и просуммировать в различных разрезах для получения конкретных отчетов. Когда это так, то отображение и печать отчетов наиболее просто и дешево реализуются в OLAP-системах. В любом случае система внутренней отчетности предприятия не так консервативна и может быть перестроена в целях экономии средств на технические работы по созданию отчетов и получения возможностей многомерного оперативного анализа.

10. Посещаемость сайта.

Лог-файл Интернет-сервера многомерен по природе, а значит подходит для OLAP-анализа. Фактами являются: количество посещений, количество хитов, время проведенное на странице и другая информация, имеющаяся в логе.

11. Объемы производства.

Это еще один пример статистического анализа. Таким образом, можно анализировать объемы выращенного картофеля, выплавленной стали, произведенного товара.

12. Потребление расходных материалов.

Представьте себе завод, состоящий из десятков цехов, в которых расходуются охлаждающие, промывочные жидкости, масла, ветошь, наждачная бумага - сотни наименований расходных материалов. Для точного планирования, оптимизации издержек требуется тщательный анализ фактического потребления расходных материалов.

13. Использование помещений.

Еще один вид статистического анализа. Примеры: анализ загруженности учебных аудиторий, сдаваемых в аренду зданий и помещений, использования залов для конференций и пр.

14. Текучесть кадров на предприятии.

Анализ текучести кадров на предприятии в разрезе филиалов, отделов, профессий, уровня образования, пола, возраста, времени.

15. Пассажирские перевозки.

Анализ количества проданных билетов и сумм в разрезе сезонов, направлений, видов вагонов (классов), типов поездов (самолетов).

Этим списком не ограничиваются сферы применения OLAP - технологий. Для примера рассмотрим технологию OLAP -анализа в сфере продаж.

8. Пример использования OLAP -технологий для анализа в сфере продаж.

Проектирование многомерного представления данных для OLAP -анализа начинается с формирования карты измерений. Например, при анализе продаж может быть целесообразно, выделить отдельные части рынка (развивающиеся, стабильные, крупные и мелкие потребители, вероятность появления новых потребителей и т.п.) и оценить объемы продаж по продуктам, территориям, покупателям, сегментам рынка, каналам сбыта и размерам заказов. Эти направления образуют координатную сетку многомерного представления продаж - структуру его измерений.

Поскольку деятельность любого предприятия протекает во времени, первый вопрос, который возникает при анализе, это вопрос о динамике развития бизнеса. Правильная организация оси времени позволит качественно ответить на этот вопрос. Обычно ось времени делится на годы, кварталы и месяцы. Возможно еще большее дробление на недели и дни. Структура временного измерения формируется с учетом периодичности поступления данных; может обуславливаться также периодичностью востребования информации.

Измерение «группы товаров» разрабатывается так, чтобы в максимальной степени отразить структуру продаваемой продукции. При этом важно соблюсти определенный баланс, чтобы, с одной стороны, избежать излишней детализации (количество групп должно быть обозримым), а с другой - не упустить существенный сегмент рынка.

Измерение «Клиенты» отражает структуру продаж по территориально-географическому признаку. В каждом измерении могут существовать свои ие рархии, например, в данном измерении это может быть структура: Страны – Регионы – Города – Клиенты.

Для анализа эффективности деятельности подразделений следует создать свое измерение. Например, можно выделить два уровня иерархии: департаменты и входящие в них отделы, что и должно найти отражение в измерении «Подразделения».

По сути, измерения «Время», «Товары», «Заказчики» достаточно полно определяют пространство предметной области.

Дополнительно, полезно разбить это пространство на условные области, взяв за основу вычисляемые характеристики, например, диапазоны объема сделок в стоимостном выражении. Тогда весь бизнес можно разделить на ряд стоимостных диапазонов, в котором он осуществляется. В данном примере можно ограничиться следующими показателями: суммами продаж товаров, количеством проданных товаров, величиной дохода, количеством сделок, количеством клиентов, объемом закупок у производителей.

OLAP – куб для анализа будет иметь вид (рис. 2):


Рисунок 2. OLAP – куб для анализа объема продаж

Вот именно такой трехмерный массив в терминах OLAP и называется кубом. На самом деле, с точки зрения строгой математики кубом такой массив будет далеко не всегда: у настоящего куба количество элементов во всех измерениях должно быть одинаковым, а у кубов OLAP такого ограничения нет. Куб OLAP совсем не обязательно должен быть трехмерным. Он может быть и двух- , и многомерным - в зависимости от решаемой задачи. Серьезные OLAP-продукты рассчитаны на количество измерений порядка 20. Более простые настольные приложения поддерживают где-то 6 измерений.

Должны быть заполнены далеко не все элементы куба: если нет информации о продажах Товара 2 Клиенту 3 в третьем квартале, значение в соответствующей ячейке просто не будет определено.

Однако куб сам по себе для анализа не пригоден. Если еще можно адекватно представить или изобразить трехмерный куб, то с шести- или девятнадцатимерным дело обстоит значительно хуже. Поэтому перед употреблением из многомерного куба извлекают обычные двумерные таблицы. Эта операция называется "разрезанием" куба. Аналитик как бы берет и "разрезает" измерения куба по интересующим его меткам. Этим способом аналитик получает двумерный срез куба (отчет) и с ним работает. Структура отчета представлена на рисунке 3.

Рисунок 3. Структура аналитического отчета

Разрежем наш OLAP – куб и получим отчет о продажах за третий квартал, он будет иметь следующий вид (рис.4).

Рисунок 4. Отчет о продажах за третий квартал

Можно разрезать куб вдоль другой оси и получить отчет о продажах группы товаров 2 в течение года (рис. 5).

Рисунок 5. Поквартальный отчет о продажах товара 2

Аналогично можно проанализировать отношения с клиентом 4, разрезав куб по метке Клиенты (рис. 6)

Рисунок 6. Отчет о поставках товаров клиенту 4

Можно детализировать отчет по месяцам или говорить о поставках товаров в определенный филиал клиента.

Анна Иванова

Сегодня практически любая компания, будь то крупная или совсем небольшая, частная или государственная, использует в своей деятельности информационные системы и, как правило, - уже не первый год. Это означает, что большинство предприятий уже владеет определенным объемом накопленных данных, и этот объем нередко представляет собой немалую ценность - ее, как минимум, подтверждает тот факт, что в последние годы довольно много внимания в прессе уделяется утечкам корпоративных данных, рассматривающихся в качестве выгодного товара для криминального рынка.

Отметим, что ценность корпоративных данных заключается не только в совокупной стоимости отдельных записей, но и в зачастую намного превышающей ее стоимости набора данных как источника дополнительной информации, которую невозможно получить на основании одной или нескольких записей, - такой, как сведения о закономерностях, тенденциях или взаимозависимостях между какими-либо данными, позволяющие принимать определенные бизнес-решения. Именно поэтому в состав современных средств управления предприятиями и цепочками поставок, банковских информационных систем, других бизнес-приложений обычно включаются не только средства ввода и редактирования данных, но и средства их аналитической обработки, позволяющие тем или иным способом выявлять и представлять закономерности и тенденции в данных. Средства эти сегодня весьма разнообразны. Они включают инструменты для построения реляционных хранилищ данных - специальным образом спроектированных баз данных, позволяющих с высокой скоростью выполнять запросы на выбор данных; серверные и клиентские средства построения многомерных хранилищ данных, содержащих в нереляционной структуре агрегатные данные (суммы, средние значения); клиентские приложения для предоставления пользовательских интерфейсов к реляционным и многомерным хранилищам данных; средства создания решений на основе подобных хранилищ, анализа многомерных и реляционных данных, генерации отчетов по многомерным и реляционным данным. Ниже мы обсудим, что представляют собой продукты каждой из указанных категорий.

Хранилища данных

Хранилищем данных (Data Warehouse) обычно называют базу данных, основное назначение которой - выполнение аналитических запросов на выбор данных. Хранилища данных могут быть и реляционными, и многомерными.

Ральф Кимбалл (Ralph Kimball), один из авторов концепции хранилищ данных, описывал хранилище данных как "место, где люди могут получить доступ к своим данным" (см., например, Ralph Kimball, The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses , John Wiley & Sons, 1996 и The Data Webhouse Toolkit: Building the Web-Enabled Data Warehouse , John Wiley & Sons, 2000). Он же сформулировал и основные требования к хранилищам данных:

  • поддержка высокой скорости получения данных из хранилища;
  • поддержка внутренней непротиворечивости данных;
  • возможность получения и сравнения так называемых срезов данных (slice and dice);
  • наличие удобных утилит просмотра данных в хранилище;
  • полнота и достоверность хранимых данных;
  • поддержка качественного процесса пополнения данных.

Выполнить все перечисленные требования в рамках одного и того же продукта зачастую не удается. Поэтому для реализации хранилищ данных обычно используется несколько продуктов, одни их которых представляют собой собственно средства хранения данных, другие - средства их извлечения и просмотра, третьи - средства их пополнения и т. д.

Отметим, что при проектировании хранилищ всегда делаются априорные предположения о характере взаимозависимостей размещаемых в них данных, и польза от применения хранилища данных при принятии управленческих решений во многом зависит от правильности этих предположений.

Реляционные хранилища данных

В отличие от так называемых оперативных баз данных, с которыми работают приложения, изменяющие данные, реляционные хранилища данных проектируются таким образом, чтобы добиться минимального времени выполнения запросов на чтение (у оперативных же баз данных чаще всего минимизируется время выполнения запросов на изменение данных). Обычно данные копируются в хранилище из оперативных баз данных согласно определенному расписанию.

Типичная структура хранилища данных существенно отличается от структуры обычной реляционной СУБД. Как правило, эта структура денормализована (это повышает скорость выполнения запросов) и может допускать избыточность данных. Типичная структура хранилища данных приведена на рис. 1. Основные составляющие этой структуры - таблица фактов (fact table) и таблицы измерений (dimension tables).

Таблица фактов (в примере на рис. 1 она называется Sales_Fact) - это основная таблица хранилища данных. Как правило, в нее входят сведения об объектах или событиях, совокупность которых будет в дальнейшем анализироваться. Обычно такая таблица содержит уникальный составной ключ, объединяющий первичные ключи таблиц измерений. Чаще всего это целочисленные значения либо значения типа "дата/время" - ведь таблица фактов может содержать сотни тысяч или даже миллионы записей, и хранить в ней повторяющиеся текстовые описания, как правило, невыгодно. Помимо этого таблица фактов содержит одно или несколько числовых полей, на основании которых в процессе выполнения аналитических запросов получаются агрегатные данные.

Отметим, что в таблице фактов нет никаких сведений о том, как группировать записи при вычислении агрегатных данных. Эти сведения содержатся в таблицах измерений.

Таблицы измерений содержат неизменяемые либо редко изменяемые данные. В них имеется как минимум одно описательное поле и, как правило, целочисленное ключевое поле (обычно это суррогатный ключ). Нередко (но не всегда) таблица измерений может содержать и поля, указывающие на дополнительные атрибуты, имевшиеся в исходной оперативной базе данных, или на атрибуты, ответственные за группировку ее собственных данных. Каждая таблица измерений должна находиться в отношении "один ко многим" с таблицей фактов.

Отметим, что скорость роста таблиц измерений должна быть незначительной по сравнению со скоростью роста таблицы фактов; например, новая запись в таблицу измерений, характеризующую товары, добавляется только при появлении нового, не продававшегося ранее товара.

В состав современных средств проектирования данных, таких, как CA AllFusion Modelling Suite, обычно входят шаблоны для проектирования хранилищ данных. Следует сказать, что для создания реляционных хранилищ данных иногда применяются специализированные СУБД, хранение данных в которых оптимизировано с точки зрения скорости выполнения запросов. Пример такого продукта - Sybase Adaptive Server IQ, реализующий нетрадиционный способ хранения данных в таблицах. Однако создавать хранилища можно и в обычных реляционных СУБД.

OLAP и многомерные хранилища данных

Многомерные хранилища данных составляют основу OLAP-средств (On-Line Analytical Processing), предназначенных для комплексного многомерного анализа данных. Концепция OLAP была описана в 1993 г. Э. Ф. Коддом, автором реляционной модели данных, и в настоящее время поддержка OLAP реализована во многих СУБД и средствах анализа данных.

Многомерные хранилища обычно содержат агрегатные данные (например, суммы, средние значения, количество значений) для различных выборок. Чаще всего такие агрегатные функции образуют многомерный набор данных, называемый кубом, оси которого (называемые измерениями) содержат параметры, а ячейки - зависящие от них агрегатные данные (иногда их называют мерами). Вдоль каждой оси данные могут быть организованы в иерархии, отражающие различные уровни их детализации. Как правило, агрегатные данные получаются путем выполнения серии запросов на группировку данных типа:

Отметим, что довольно часто в качестве источника данных для подобных запросов выступают реляционные хранилища данных. В этом случае таблицы измерений, как правило, содержат исходные данные для формирования измерений куба, а таблица фактов - исходные данные для вычисления мер куба.

В многомерных хранилищах данных содержатся агрегатные данные различной степени подробности, например, объемы продаж по дням, месяцам, годам, по категориям товаров и т. п. Цель хранения агрегатных данных - сократить время выполнения запросов, поскольку в большинстве случаев для анализа и прогнозов интересны не детальные, а суммарные данные. Однако сохранение всех агрегатных данных не всегда оправданно - ведь при добавлении новых измерений объем данных, составляющих куб, растет экспоненциально (иногда говорят о "взрывном росте" объема данных). Для решения проблемы "взрывного роста" применяются разнообразные схемы, позволяющие при вычислении далеко не всех возможных агрегатных данных достичь приемлемой скорости выполнения запросов.

Как исходные, так и агрегатные данные могут храниться либо в реляционных, либо в многомерных структурах. Поэтому в настоящее время применяются три способа хранения данных:

  • MOLAP (Multidimensional OLAP) - исходные и агрегатные данные хранятся в многомерной базе данных;
  • ROLAP (Relational OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально находились, агрегатные же данные помещают в специально созданные для их хранения служебные таблицы в той же базе данных;
  • HOLAP (Hybrid OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально находились, а агрегатные хранятся в многомерной базе данных.

Некоторые OLAP-средства поддерживают хранение данных только в реляционных структурах, некоторые - только в многомерных. Однако большинство современных серверных OLAP-средств поддерживают все три способа хранения данных. Выбор способа хранения зависит от объема и структуры исходных данных, требований к скорости выполнения запросов и частоты обновления OLAP-кубов.

Выпущенные в течение последних лет СУБД ведущих производителей - IBM, Microsoft, Oracle, содержат средства для создания многомерных хранилищ данных (эта традиция была начата несколько лет назад корпорацией Microsoft, включившей OLAP-сервер в состав SQL Server 7.0). Существуют и отдельные продукты для создания OLAP-хранилищ - их выпускают компании Hyperion, Sybase, Business Objects и некоторые другие.

Data Mining

Термином Data Mining (mining в переводе с английского означает "добыча полезных ископаемых") обозначают процесс поиска корреляций, тенденций, взаимосвязей и закономерностей между данными посредством различных математических и статистических алгоритмов: кластеризации, создания субвыборок, регрессионного и корреляционного анализа. Примерами искомой информации могут служить сведения о том, какие категории покупателей чаще всего приобретают тот или иной товар, какая часть покупателей одного конкретного товара приобретает другой конкретный товар, какая категория клиентов чаще всего вовремя не выплачивает предоставленный кредит. Подобного рода информация обычно используется при прогнозировании, стратегическом планировании, анализе рисков, и ценность ее для предприятия очень высока.

Отметим, что традиционная математическая статистика и OLAP-средства не всегда годятся для решения таких задач. Обычно статистические методы и OLAP используют для проверки заранее сформулированных гипотез, но нередко именно формулирование гипотезы оказывается самой сложной задачей при проведении бизнес-анализа для последующего принятия решений, поскольку далеко не все закономерности в данных очевидны с первого взгляда.

В основу современной технологии Data Mining положена концепция шаблонов, отражающих закономерности, свойственные подвыборкам данных. Поиск шаблонов выполняется методами, не использующими никаких исходных предположений об этих подвыборках. Если при статистическом анализе или при применении OLAP обычно формулируются вопросы типа "Каково среднее число клиентов банка, не вернувших вовремя кредит, среди неженатых мужчин от 40 до 50 лет?", то применение Data Mining, как правило, подразумевает ответы на вопросы типа "Существует ли типичная категория клиентов, не возвращающих вовремя кредиты?". При этом именно ответ на второй вопрос нередко обеспечивает принятие успешного бизнес-решения.

Важная особенность Data Mining - нестандартность и неочевидность разыскиваемых шаблонов. Иными словами, средства Data Mining отличаются от инструментов статистической обработки данных и средств OLAP тем, что вместо проверки заранее предполагаемых пользователями взаимозависимостей они на основании имеющихся данных способны находить такие взаимозависимости самостоятельно и строить гипотезы об их характере. Однако применение средств Data Mining не исключает использования статистических инструментов и OLAP-средств, поскольку результаты обработки данных с помощью последних, как правило, способствуют лучшему пониманию характера закономерностей, которые следует искать. Поэтому существуют средства Data Mining, способные выполнять поиск закономерностей, корреляций и тенденций и в реляционных, и в многомерных хранилищах данных.

Обычно выделяют пять стандартных типов закономерностей, выявляемых методами Data Mining:

  • ассоциация - высокая вероятность связи событий друг с другом (например, горные лыжи часто приобретаются вместе с горнолыжными ботинками);
  • последовательность - высокая вероятность цепочки связанных во времени событий (например, в течение определенного срока после приобретения принтера с высокой вероятностью будут приобретены расходные материалы к нему);
  • классификация - имеются признаки, характеризующие группу, к которой принадлежит то или иное событие или объект (обычно при этом на основании анализа уже классифицированных событий формулируются некие правила);
  • кластеризация - закономерность, сходная с классификацией и отличающаяся от нее тем, что сами группы при этом не заданы - они выявляются автоматически в процессе обработки данных;
  • временные закономерности - наличие шаблонов в динамике поведения тех или иных данных (типичный пример - сезонные колебания спроса на те или иные товары либо услуги), используемых для прогнозирования.

Сегодня существует довольно большое количество разнообразных методов исследования данных, среди которых можно выделить следующие.

Регрессионный, дисперсионный и корреляционный анализ - реализован в большинстве современных статистических пакетов, в частности, в продуктах компаний SAS Institute, StatSoft и т. д.

Методы анализа в конкретной предметной области , базирующиеся на эмпирических моделях. Часто применяются, например, в недорогих средствах финансового анализа.

Нейросетевые алгоритмы , идея которых основана на аналогии с функционированием нервной ткани и заключается в том, что исходные параметры рассматриваются как сигналы, преобразующиеся в соответствии с имеющимися связями между "нейронами", а в качестве ответа (результата анализа) рассматривается отклик всей сети на исходные данные. Связи в этом случае создаются с помощью так называемого обучения сети посредством выборки большого объема, содержащей как исходные данные, так и правильные ответы.

Метод "ближайшего соседа" - выбор близкого аналога исходных данных из уже имеющихся накопленных данных.

Деревья решений - иерархическая структура, базирующаяся на наборе вопросов, подразумевающих ответ "да" или "нет"; хотя этот способ обработки данных далеко не всегда идеально находит существующие закономерности, он довольно часто используется в системах прогнозирования в силу наглядности получаемого ответа (рис. 3).

Алгоритмы ограниченного перебора - вычисляют частоты комбинаций простых логических событий в подгруппах данных.

Эволюционное программирование - поиск и генерация алгоритма, выражающего взаимозависимость данных, на основании изначально заданного алгоритма, модифицируемого в процессе поиска; иногда поиск взаимозависимостей проводится среди каких-либо определенных видов функций (например, полиномов).

Средства Data Mining традиционно относятся к дорогостоящим программным инструментам - цена некоторых из них доходит до нескольких десятков тысяч долларов. Поэтому до недавнего времени основными потребителями этой технологии были банки, финансовые и страховые компании, крупные торговые предприятия, а основными задачами, требующими применения Data Mining, считались оценка кредитных и страховых рисков и выработка маркетинговой политики, тарифных планов и иных принципов работы с клиентами. В последние годы ситуация несколько изменилась: на рынке ПО появились относительно недорогие инструменты Data Mining от нескольких производителей (в том числе от Microsoft), что сделало эту технологию доступной для предприятий малого и среднего бизнеса, ранее о ней и не помышлявших.

Средства визуализации OLAP-данных и результатов Data Mining

Универсальные средства визуализации OLAP-данных выпускают многие компании, такие, как Business Objects, Cognos, Panorama, ProClarity. Как правило, эти инструменты рассчитаны на пользователей, обладающих определенными познаниями в области баз данных и статистических методов анализа. Обычно подобные инструменты позволяют обращаться к хранилищам данных и OLAP-источникам различных производителей (например, к многомерным хранилищам на основе СУБД Oracle, Microsoft и IBM), получать срезы многомерных данных и строить на их основе диаграммы. Зачастую производители этих инструментов поставляют также middleware-серверы, предназначенные для выполнения анализа данных и предоставления результатов для отображения в клиентских приложениях, а также средства создания решений на основе клиентских инструментов и middleware-серверов (например, библиотеки классов или элементы управления ActiveX). Учитывая, что ситуация со стандартами в области бизнес-аналитики все еще далека от идеальной (в отличие от реляционных СУБД, для многомерных СУБД пока нет ни общепринятого стандарта языка запросов, аналогичного языку SQL, ни универсальных механизмов доступа к данным, аналогичных ODBC или OLEDB), применение подобных средств может в той или иной степени решить проблему создания аналитических приложений в компаниях, использующих СУБД и OLAP-средства от нескольких различных производителей.

Производители OLAP-средств, в частности, Oracle и IBM, нередко сами выпускают рассчитанные на пользователей клиентские приложения для доступа к OLAP-хранилищам, созданным на основе их же серверных средств. Так, у корпорации Oracle имеется даже несколько таких продуктов, объединенных в пакет Oracle Business Intelligence. Кроме того, в последнее время получили широкое распространение дополнительные модули для электронных таблиц, предназначенные для визуализации OLAP-данных. Так, средства отображения данных аналитических служб Microsoft SQL Server доступны пользователям Microsoft Excel 2000 и более поздних версий, а компании Oracle и Hyperion выпускают встраиваемые в тот же Excel дополнительные модули доступа к собственным OLAP-хранилищам.

Стоит отметить и расширение в последние годы спектра аналитических продуктов, ориентированных на обслуживание определенных отраслей (например, розничной или оптовой торговли, финансовых услуг). Их выпускают и перечисленные выше компании, и ряд других производителей, в частности, поставщики систем управления предприятиями и других отраслевых бизнес-приложений.

Средства генерации отчетов

Отчет представляет собой документ, содержимое которого динамически формируется на основе информации, содержащейся в базе данных. На рынке ПО сейчас представлено немало средств создания отчетов: как отдельных продуктов, так и входящих в состав средств разработки приложений или СУБД, и реализованных в виде либо серверных служб, либо клиентских приложений. Как правило, средства создания отчетов поддерживают широкий спектр универсальных механизмов доступа к данным (ODBC, OLE DB, ADO.NET), нередко - средства прямого доступа к наиболее популярным СУБД с помощью их клиентских API, содержат средства деловой графики, интегрируются с офисными приложениями, позволяют публиковать отчеты в Интернете, включают классы или компоненты, предназначенные для создания приложений, реализующих (наряду с другими возможностями) генерацию отчетов.

Безусловный лидер рынка средств создания отчетов - продукт Crystal Reports, принадлежащий компании Business Objects. Он поставляется как отдельно, так и в составе продуктов других производителей, начиная со средств разработки приложений и заканчивая геоинформационными системами. Существует и серверная версия этого продукта, предназначенная для обеспечения отчетами большого количества пользователей. Помимо Crystal Reports, существует несколько менее популярных продуктов подобного класса.

Заключение

В настоящем обзоре мы рассмотрели основные технологии, лежащие в основе современных аналитических приложений. Как видно, выбор и технологий, и реализующих их продуктов достаточно широк, особенно с учетом факта наличия подобных средств в составе современных серверных СУБД и широкого спектра клиентских средств для визуализации результатов анализа и создания аналитических отчетов. Тем не менее отсутствие общепринятых стандартов в области бизнес-аналитики пока что создает определенные проблемы при создании использующих ее решений.

OLTP-это системы обработки трансакций в реальном времени. OLTP рассчитаны на быстрое обслуживание относительно простых запросов большого числа пользователей. Их харак-ет малое время ожидания выполнения запросов. Эти системы работают с небольшими трансакциями, но идущими большими потоками.

Осн. св-ва:1)Атомарность-выполнение операций полностью или невыполнение вообще.

2)Согласованность-гарантия взаимной целостности данных

3)Изолированность-выполнение операций изолированно в пользовательской сети

4)Долговечность-если трансакция выполнена успешно, то произведенные в ней изменения в БД не б/т потеряны ни при каких обстоятельствах

31. Технология olap (On-Line Analytical Processing оперативная аналитическая обработка).

OLAP-система поддержки принятия решений,ориентир-ые на выполнение более сложных запросов, требующих статистической обработки исторических данных, накопленных за определен-ый промежуток времени.

OLAP основ-ся на Data Mining. Data Mining- сов-ть методов или технологий интелек-го анализа данных с целью выявления в данных ранее неизвестных, нетривиальных(непростых), практически полезных и доступных интерпретации знаний, необходимых для принятия решений. OLAP вкл-ет в себя: 1)ср-ва обработки инф-ции на основе методов искусственного интеллекта

2) ср-ва графического представления данных.

OLAP-технологии основывается при помощи многомерной БД, называемых OLAP-кубами.

32.Хранилище данных (ХД), понятие и концепции построения .

ХД-это предметно-ориентированная, интегрированная, неизменная, поддерживающая хронологию электрон-я коллекция (собрание) данных для принятия реш-ия, т.е ХД яв-ся местом складывания собираемых в системе дан-х и информац-х источников для реш-ия задач анализа и принятия реш-ий.

Св-ва (принципы)организации ХД:

1)предметно-ориентированное. Инф-ция в ХД организована в соот-ии с основ-ми аспектами деят-ти п/п, т.е бизнес-процессами. Данные объедин-ся в категории и хранятся в соот-ии и с областями, кот-е они описывают

2)интегрированность -исходные данные извлек-ся из операц-х БД, проверяются, очищаются, приводятся к единому виду, в нужной степени агрегируются и загружаются в ХД

3)неизменность (некорректируемость)-попав в опред-ый исторический слой ХД, данные уже никогда не б/т изменены. Данные в ХД не создаются, т.е поступают из внешних источников, не корректир-ся и не удаляются

4)поддержание хронологии (истории)- привязка ко времени,или завис-ть от времени, т.е данные в ХД напрямую связаны с опреде-ым периодом времени.

ХД-организация и поддержка предметно-ориентированной, интегрированной, слабо изменяемой по внутренней структуре и поддерживающей хронологию электронной коллекции данных для обработки (анализа) с целью извлечения (добычи) новых данных или обобщения имеющихся.

ХД –структурно-расширяемая, вычислительная среда, спроектированная для анализа неизменяемых во времени данных, кот-е логически и физически преобразованы из различных источников и соответ-ая направлениям бизнеса, обновляемая и поддерживаемая в длительный период времени, выраженная в простых терминах и обобщенная (суммированная) для быстрого анализа.

33. Data Mining – это совокупность методов обнаружения в БД ранее неизвестных, нетривиальных (непростых), практически полезных, доступных для интерпретации знаний, необходимых для принятия решений в различных сферах человеческой жизни.

Datamining– это процесс выделения из БД неявной и не структурированной информации с представлением её в виде пригодной для использования.

Задачи DM:

    Классификация – процесс группировки объектов исследования или наблюдения в соответствии с их общими признаками. В результате решения этой задачи обнаруживаются признаки, которые характеризуют группы объектов, исследуемого набора данных, т.е. классы. По этим признакам новый объект можно отнести к тому или иному классу.

    Кластеризация – задача разбития заданной ситуации на подмножества, называемые кластерами.

    Ассоциация – поиск закономерностей, осуществляемый не на основе свойств объекта, а между несколькими событиями, которые происходят одновременно.

    Прогнозирование – на основе исторических данных оцениваются пропущенные или же будущие значения целевых численных показателей.

34. 1С:Предприятие - программный продукт компании , предназначенный для автоматизации деятельности на предприятии.

1С:Предприятие - это (одновременно) и технологическая платформа, и пользовательский режим работы. Технологическая платформа предоставляет объекты (данных и метаданных) и механизмы управления объектами. Объекты (данные и метаданные) описываются в виде конфигураций. При автоматизации какой-либо деятельности составляется своя конфигурация объектов, которая и представляет собой законченное прикладное решение. Конфигурация создаётся в специальном режиме работы программного продукта под названием «Конфигуратор», затем запускается режим работы под названием «1С:Предприятие», в котором пользователь получает доступ к основным функциям, реализованным в данном прикладном решении (конфигурации).

Типовые конфигурации:

    Конфигурация «1С:Бухгалтерия 8»

Основные возможности: ведение учёта по нескольким организациям в одной базе; ведение как бухгалтерского, так и налогового учёта (на раздельных планах счетов); возможность ведения учёта по упрощённой системе налогообложения (для каждой организации система налогообложения может быть выбрана независимо); более гибкие возможности по учётной политике (задаётся раздельно для бухгалтерского и налогового учёта), закрытию счетов, расчёту амортизации, учёту НДС , в том числе включение/исключение из стоимости с учётом ЕНВД в розничной торговле.

    Конфигурация «1С:Управление Торговлей 8»

Предназначена для ведения торгово-складского учёта на предприятиях. Функциональность по сравнению с конфигурацией «1С: Торговля и склад 7.7» расширена: появились возможности управления отношениями с клиентами (CRM), а также возможность планирования продаж и закупок.

    Конфигурация «1С:Зарплата и управление персоналом 8»

Предназначена для реализации кадровой политики предприятия и денежных расчётов с персоналом по следующим направлениям:

    планирование потребностей в персонале;

    управление финансовой мотивацией персонала;

    эффективное планирование занятости персонала;

    учёт кадров и анализ кадрового состава;

    начисление и выплата заработной платы;

    исчисление регламентированных законодательством налогов и взносов с фонда оплаты труда;

    отражение начисленной зарплаты и налогов в затратах предприятия.

    Конфигурация «1С:Управление производственным предприятием 8»

Наиболее интересные особенности, которые в подавляющем большинстве других систем не встречаются:

    Имеются конфигурации: «Управление производственным предприятием» (для России), «Управление производственным предприятием для Украины» и «Управление производственным предприятием для Казахстана», и это именно разные конфигурации, а не разные варианты настроек.

    Существует возможность изменения учтённых (проведённых) документов.Уровень техподдержки зависит от фирмы-партнера (так называемых «франчайзи»). Для поиска партнера существует специальный ресурс: «Выбор аттестованных франчайзи» .

Архитектура 1С:Предприятие 8

1) Общие механизмы. Система 1С:Предприятие 8 имеет в своей основе ряд механизмов, определяющих концепцию создания прикладных решений. Наличие этих механизмов позволяет максимально соотнести технологические возможности с бизнес-схемой разработки и внедрения прикладных решений.

В качестве ключевых моментов можно выделить изоляцию разработчика от технологических подробностей, алгоритмическое программирование только бизнес-логики приложения, использование собственной модели базы данных и масштабируемость прикладных решений без их доработки.

2) Прикладные механизмы. Состав прикладных механизмов 1С:Предприятия ориентирован на решение задач автоматизации учета и управления предприятием. Использование проблеммно-ориентированных объектов позволяет разработчику решать самый широкий круг задач складского, бухгалтерского, управленческого учета, расчета зарплаты, анализа данных и управления на уровне бизнес-процессов. 3) Интерфейсные механизмы. В 1С:Предприятии 8 реализован современный дизайн интерфейса и повышена комфортность работы пользователей при работе с системой в течение длительного времени.

4) Масштабируемость. Технологическая платформа обеспечивает различные варианты работы прикладного решения: от персонального однопользовательского, до работы в масштабах больших рабочих групп и предприятий. Ключевым моментом масштабируемости является то, что повышение производительности достигается средствами платформы, и прикладные решения не требуют доработки при увеличении количества одновременно работающих пользователей.

5) Интеграция. Система 1С:Предприятие 8 является открытой системой. Предоставляется возможность для интеграции практически с любыми внешними программами и оборудованием на основе общепризнанных открытых стандартов и протоколов передачи данных.

35. ИКИС «Галактика» входит в комплекс бизнес-решений Галактика Business Suite, главное назначение которой – выполнение в едином информационном пространстве типовых и специализированных задач управления предприятием, холдингом, группой компаний в условиях современной экономики.

Система Галактика ориентирована на автоматизацию решения задач, возникающих на всех стадиях управленческого цикла: прогнозирование и планирование, учет и контроль реализации планов, анализ результатов, коррекция прогнозов и планов. Основной структурной единицей системы является модуль, предназначенный для решения отдельных задач определенной предметной области (например, «Управление сбытом», «Планирование производства»). Модули, в свою очередь, объединены в функциональные контуры. Допустимо как изолированное использование отдельных модулей, так и их произвольные комбинации, в зависимости от производственно-экономической необходимости. Стоит отметить, что в системе Галактика ERP сделан первый шаг к реализации концепции компонентной модели: логически модули системы состоят из компонент, взаимодействующих друг с другом через специальные интерфейсы.

Контур планирования и управления финансами системы Галактика ERP – это надежный инструмент для управления финансовыми ресурсами компании. Он адресован руководителям и специалистам финансовых и планово-экономических служб. С его помощью можно выполнять планирование финансово-хозяйственной деятельности предприятия, осуществлять моделирование и согласование финансовых планов, проводить анализ их фактического исполнения, вести оперативный финансовый менеджмент. Контур планирования и управления финансами системы Галактика ERP состоит из трех модулей – «Управление бюджетом», «Платежный календарь» и «Финансовый анализ».

Бюджетирование – процесс управления финансовыми ресурсами, включающий в себя следующие этапы:

Планирование и моделирование различных вариантов бюджетов;

Согласование и утверждение бюджетов;

Формирование фактических показателей бюджета;

Проведение корректировок бюджета.

Назначение модуля «Платежный календарь» - решение задач опертивного финансового управления денежными потоками. Модуль является инструментом контроля исполнения финансовых обязательств, обеспечения абсолютной ликвидности платежных средств, минимизации риска неплатежеспособности.

Основная задача финансового анализа – оценка финансового состояния предприятия и выявление перспектив его дальнейшего развития. Анализ финансового состояния может производится по нескольким методикам, позволяющим рассчитывать значения одних и тех же показателей с помощью разных формул, описывающих соотношение показателей в старом и новом стандарте. Финансовый анализ производится на основе данных баланса предприятия, а так же на основе различных справок и приложений. Экономический анализ производится после выполнения функции импорта отчетов, как из внешних источников, так и из других модулей системы.

Железо